1.已知向量a=(sinQ,1),b=(1,cosQ),-π/2<Q<π/2 求|a+b|的最大值
2.已知ABC为三角形ABC三内角,向量m=(-1,根号3),n=(cosA,sinA),且m×n=1若(1+sin2B)/(cos^2B-sin^2B)=-3,求谈B,...
2.已知ABC为三角形ABC三内角,向量m=(-1,根号3),n=(cosA,sinA),且m×n=1
若(1+sin2B)/(cos^2B-sin^2B)=-3,求谈B,tanC
(cos^2B是cosB的平方) 展开
若(1+sin2B)/(cos^2B-sin^2B)=-3,求谈B,tanC
(cos^2B是cosB的平方) 展开
展开全部
解:(1)a+b=(sinQ+1,1+cosQ)
|a+b|=√(a+b)²=√((sinQ+1)²+(1+cosQ)²)=√(sin²Q+cos²Q+2(sinQ+cosQ)+2)
=√(2(sinQ+cosQ)+3)
=√(2√2sin(Q+π/4)+3)
- π/4 <Q+π/4<3π/4 ∴-√2/2<2sin(Q+π/4)≤1 ∴1<|a+b|≤√(2√2+3)=√(1+2√2+2)=1+√2
(2)
m×n=1
-cosA+√3sinA=1 √3sinA=1+cosA两边平方,3sin^2A=(1+cosA)² sin^2A=1-2cosA+cos^2B
解得cosA=1/2,∴A=60°
(1+sin2B)/(cos^2B-sin^2B)=-3
(1+sin2B)/(cos2B)=-3
同理可求cos2B=0,B=45°tanB=1 C=75°
tan75°=tan(45°+30°)=(tan45+tan30)/(1-tan45*tan30)=2+√3.
|a+b|=√(a+b)²=√((sinQ+1)²+(1+cosQ)²)=√(sin²Q+cos²Q+2(sinQ+cosQ)+2)
=√(2(sinQ+cosQ)+3)
=√(2√2sin(Q+π/4)+3)
- π/4 <Q+π/4<3π/4 ∴-√2/2<2sin(Q+π/4)≤1 ∴1<|a+b|≤√(2√2+3)=√(1+2√2+2)=1+√2
(2)
m×n=1
-cosA+√3sinA=1 √3sinA=1+cosA两边平方,3sin^2A=(1+cosA)² sin^2A=1-2cosA+cos^2B
解得cosA=1/2,∴A=60°
(1+sin2B)/(cos^2B-sin^2B)=-3
(1+sin2B)/(cos2B)=-3
同理可求cos2B=0,B=45°tanB=1 C=75°
tan75°=tan(45°+30°)=(tan45+tan30)/(1-tan45*tan30)=2+√3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询