解方程有哪些步骤
4个回答
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
步骤:有分母先去分母;有括号就去括号;需要移项就进行移项;合并同类项;系数化为1求得未知数的值;开头要写“解”。
解方程步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹开头要写“解”
因式分解法
把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
解方程步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹开头要写“解”
因式分解法
把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解方程有哪些步骤呢?
步骤:有分母先去分母;有括号就去括号;需要移项就进行移项;合并同类项;系数化为1求得未知数的值;开头要写“解”。
解方程的6个基本步骤
解方程步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹开头要写“解”
因式分解法
把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
扩展内容:
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
相关概念
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6.注意事项:写“解”字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)
步骤:有分母先去分母;有括号就去括号;需要移项就进行移项;合并同类项;系数化为1求得未知数的值;开头要写“解”。
解方程的6个基本步骤
解方程步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹开头要写“解”
因式分解法
把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
扩展内容:
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
相关概念
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6.注意事项:写“解”字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询