求函数y=e^-xcosx的二阶及三阶导数
y'最后求导为什么不是e^(-x)(cosx-sinx)?
y''为什么最后我求解出来是2e^(-x)cosx ,请问高手我哪步错了? 展开
y=e^(-x)cosx
y'=[e^(-x)cosx]'
=[e^(-x)]'cosx+e^(-x)(cosx)'
=-e^(-x)cosx+e^(-x)(-sinx)
=-e^(-x)(cosx+sinx)
y''=[-e^(-x)(cosx+sinx)]'
=-[e^(-x)]'(cosx+sinx)+e^(-x)(cosx+sinx)']
=-[-e^(-x)(cosx+sinx)+e^(-x)(-sinx+cosx)]
=e^(-x)(cosx+sinx)-e^(-x)(-sinx+cosx)
=e^(-x)(cosx+sinx+sinx-cosx)
=2e^(-x)sinx
y'''=[2e^(-x)sinx]'
=2[e^(-x)]'sinx+2e^(-x)(sinx)'
=-2e^(-x)sinx+2e^(-x)cosx
=2e^(-x)(cosx-sinx)
举例
例如:y=x^3+3x^2+7x+9的导数为y=3x^2+6x+7,二阶导数即y=3x^2+6x+7的导数为y=6x+6,三阶导数即y=6x+6的导数为y=6。
由此可推广到n阶导数,即将原函数进行n次求导。
三次函数的三阶导数是常数,三次项系数乘以6就是常数的值。
y''=[e^(-x)]'(cosx+sinx)+e^(-x)(cosx+sinx)'
=e^(-x)(cosx+sinx)+e^(-x)(cosx'+sinx')
=e^(-x)(cosx+sinx)+e^(-x)(-sinx+cosx)
=e^(-x)(cosx+sinx-sinx+cosx)
=e^(-x)(2cosx)
=2e^(-x)cosx
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
y'=[e^(-x)cosx]'
=[e^(-x)]'cosx+e^(-x)(cosx)'
=-e^(-x)cosx+e^(-x)(-sinx)
=-e^(-x)(cosx+sinx)
y''=[-e^(-x)(cosx+sinx)]'
=-[e^(-x)]'(cosx+sinx)+e^(-x)(cosx+sinx)']
=-[-e^(-x)(cosx+sinx)+e^(-x)(-sinx+cosx)]
=e^(-x)(cosx+sinx)-e^(-x)(-sinx+cosx)
=e^(-x)(cosx+sinx+sinx-cosx)
=2e^(-x)sinx
y'''=[2e^(-x)sinx]'
=2[e^(-x)]'sinx+2e^(-x)(sinx)'
=-2e^(-x)sinx+2e^(-x)cosx
=2e^(-x)(cosx-sinx)
y'最后求导为什么不是e^(-x)(cosx-sinx)?
y''为什么最后我求解出来是2e^(-x)cosx ,请问高手我哪步错了?
因为[e^(-x)]'=-e^(-x),(cosx)'=-sinx,所以
y'=[e^(-x)cosx]'=[e^(-x)]'cosx+e^(-x)(cosx)'=-e^(-x)cosx+e^(-x)(-sinx)=-e^(-x)(cosx+sinx)
你就错在[e^(-x)]'=-e^(-x)这一步,你解成[e^(-x)]'=e^(-x),所以后面都错了。