二项分布和古典概率的区别
二项分布和古典概率的区别:
二项分布:在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。
古典概率:通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。
古典概率的注意事项
对毫无秩序的经营管理工作做出决策时,应用这种方法就会发生各种各样的问题。这主要表现在:
1、古典概率的假想世界是不存在的。对于那些不能肯定发生,但又有可能发生的事情,古典概率不予考虑,如硬币落地后恰恰站在它的棱上;一次课堂讨论概率时突然着了火等。这些事情都是极其罕见的,但并非不可能发生,古典概率对这些情况一概不予考虑。
2、古典概率还假定周围世界对事件的干扰是均等的。这就是说,虽然按照古典概率的定义,抛平正的硬币出现正面的概率等于0.5,但是谁敢打赌无论什么时候抛10次准有5次出现正面呢?在实际生活中无次序的、靠不住的因素是经常存在的,为使概率具有使用价值,必须用其他方法定义概率。