怎么判断偏导数是否存在?偏导数存在的条件是什么?

 我来答
小浅aaa
2021-09-05 · 真正的美丽,是绽放的心。
小浅aaa
采纳数:150 获赞数:1745

向TA提问 私信TA
展开全部

偏导数由极限定义。根据定义写出某点(x0,Y0)偏导数的极限表达式。此时极限的存在性与偏导数的存在性是一致的,因此证明偏导数存在性的任务被转化为证明极限的存在性。扩展数据,为了验证偏导数的存在性,此类问题通常证明在某一点上存在偏导数。请注意,此时不能使用推导公式。

以一元函数为例,这是因为由求导公式计算的导数函数f’(x)通常包含不连续性,而不连续性x0处的f’(x)是无意义的。例如,FY(x,y)是点(x,y)处y的偏导数。应该注意的是,这里x被视为一个常数。如果需要y在(0,0)处的偏导数,首先将x固定到x=0,即首先找到FY(0,y)=[4*(y^3)*e^(y^2)]/(y^2)=4*y*e^(y^2),然后替换y=0得到FY(0,0)=4*0*1=0。

多变量函数的偏导数是其对一个变量的导数,同时保持其他变量不变(相对于全导数,允许所有变量发生变化)。偏导数在向量分析和微分几何中很有用。偏导数函数的定义是,如果Z=f(x,y)对x的偏导数存在于D区域的每个点(x,y),则该偏导数是x,y的函数,称为函数Z=f(x,y)对自变量x的偏导数。

类似地,对于Y的偏导数函数,应该注意,偏导数函数不仅可以在某一点上偏置,而且可以在某一区域的D上偏置。如果z=f(x,y)在P(x,y)处有偏导数,则点P必须属于区域D,即区域D。因此,我们自然可以认为P点的某个域属于D区域,因此P点的某个域中也必然存在偏导数函数。

小阿星96
活跃答主

2021-09-27 · 来这里与你纸上谈兵
知道小有建树答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
当然是存在的。存在的条件就是需要达到一定的数值,最后经过相应的计算就可以得出结果。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
结婚发的05
活跃答主

2021-09-27 · 守护你的好奇心是我的星辰大海
知道答主
回答量:0
采纳率:100%
帮助的人:0
展开全部
主要是通过极限确定,当极限存在,就会存在偏导数。要求函数的各个方向的导数是存在的,那么偏导数才会存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
创作者t7cgq5wdNr
活跃答主

2021-09-28 · 守护你的好奇心是我的星辰大海
知道答主
回答量:0
采纳率:90%
帮助的人:0
展开全部
要判断其中的位置,也要学会观察偏导数的市场情况,而且要有这方面的概念。可能会出现不同的斜率情况,要有充分的准备,同时要注意变量的情况。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式