极坐标下的二重积分,积分公式里的rdr是如何来的?

 我来答
林喳喳lyx
高粉答主

2021-10-09 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1220
采纳率:100%
帮助的人:24.3万
展开全部

可以先用微元法得到二重积分,然后将 ρ,θ看做新的变量X与Y,再利用直角坐标系来计算可以得到二次积分的表达式,这个应该好理解些吧。

之所以极坐标在计算二重积分时有不同的原因是在同一个dθ上面积不是均匀分布的,这也是为什么会与直角坐标系有区别的原因。

在极坐标中

极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式