一道初中数学题!具体看补充!急!好的加分!
试通过计算说明/K(K+)=(/K)-/(K+),然后计算1/X(X+1)+[1/(X+1)(X+2)]+...+[1/(X+99)(X+100)].好的加分!...
试通过计算说明/K(K+)=(/K)-/(K+),然后计算1/X(X+1)+[1/(X+1)(X+2)]+...+[1/(X+99)(X+100)].好的加分!
展开
4个回答
展开全部
1/X(X+1)+[1/(X+1)(X+2)]+...+[1/(X+99)(X+100)]=1/X-1/(X+1)+1/(X+1)-1/(X+2)]+...+1/(X+99)-1/(X+100)=1/X-1/(X+100)=100/X(X+100)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/X(X+1)+[1/(X+1)(X+2)]+...+[1/(X+99)(X+100)]
=[1/X-1/(X+1)]+[1/(X+1)-1/(X+2)]+...+[1/(X+99)-1/(X+100)].
=1/X-1/(X+100)
=100/[X(X+100)]
从以上计算显然可以看出
1/K(K+1)=(1/K)-1/(K+1)
=[1/X-1/(X+1)]+[1/(X+1)-1/(X+2)]+...+[1/(X+99)-1/(X+100)].
=1/X-1/(X+100)
=100/[X(X+100)]
从以上计算显然可以看出
1/K(K+1)=(1/K)-1/(K+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/2*3=1/2-1/3,1/3*4=1/3-1/4.......
1/X(X+1)+[1/(X+1)(X+2)]+...+[1/(X+99)(X+100)]=1/X-1/X+1+1/X+1-1/X+2+........-1/X+100=1/X-1/X+100
1/X(X+1)+[1/(X+1)(X+2)]+...+[1/(X+99)(X+100)]=1/X-1/X+1+1/X+1-1/X+2+........-1/X+100=1/X-1/X+100
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/k(k+1)
=[(k+1)-k]/k(k+1)
=(k+1)/k(k+1)-k/k(k+1)
=1/k-1/(k+1)
所以原式=1/x-1/(x+1)+1/(x+1)-1/(x+2)+……+1/(x+99)-1/(x+100)
=1/x-1/(x+100)
=100/(x²+100x)
=[(k+1)-k]/k(k+1)
=(k+1)/k(k+1)-k/k(k+1)
=1/k-1/(k+1)
所以原式=1/x-1/(x+1)+1/(x+1)-1/(x+2)+……+1/(x+99)-1/(x+100)
=1/x-1/(x+100)
=100/(x²+100x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询