请教高等数学高手,帮忙解答一个二重积分,积分区域为一个椭圆,椭圆为标准方程

C5395348
2012-08-13 · TA获得超过4314个赞
知道大有可为答主
回答量:6301
采纳率:0%
帮助的人:2219万
展开全部
因为积分区域关于x y轴都对称
所以∫∫2y^2dxdy/(x^2+y^2)^2=∫∫(x^2+y^2)dxdy/(x^2+y^2)^2=∫∫dxdy/(x^2+y^2)
设x=acost y=bsint 且积分区域对称 所以在0到 π/2积分即可 最后结果乘以4
带入得
∫∫(-absintcostdt)/(a^2cost^2+b^2sint^2)最后就是积分出来了
更多追问追答
追问
为什么不用广义极坐标来计算这个二重积分呢,椭圆在广义极坐标下的方程和参数方程只差一个r,这个r在0到1之间
追答
我试过 虽然积r时很简单 求出是lnrdt 但r的范围很复杂之后积角t时 太复杂了
729707767
2012-08-13 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4894
采纳率:50%
帮助的人:2002万
展开全部
I = ﹣2π 不可能吧?
追问
书本上式这样写的,我的书本是
《微积分教程》(第二版)(下)韩云瑞 扈志明 张广远编著 ,清华大学出版社(2007)
本题答案在388页,习题答案13.3 中的2(2)
追答
我没有这本书。这个是曲线积分化为二重积分? 具体题目是?。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式