已知函数f(x)=(1+ln(x+1))/x,(x>0),求证:(1+1·2)(1+2·3)(1+3·4)···(1+n(n+1))>e^(2n-3)

已知函数f(x)=(1+ln(x+1))/x,(x>0),求证:(1+1·2)(1+2·3)(1+3·4)···(1+n(n+1))>e^(2n-3)... 已知函数f(x)=(1+ln(x+1))/x,(x>0),求证:(1+1·2)(1+2·3)(1+3·4)···(1+n(n+1))>e^(2n-3) 展开
邓秀宽
2012-08-13
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
解:(1+1·2)(1+2·3)(1+3·4)···(1+n(n+1))>e^(2n-3)
不等式两边同时取以e为底的对数得
ln((1+1·2)(1+2·3)(1+3·4)···(1+n(n+1)))>2n-3
即ln(1+1·2)+ln(1+2·3)+……+ln(1+n(n+1))>2n-3
可以利用数学归纳法证明
①当n=1时 左边=ln3>0 右边=-1
显然成立
②当n=2时 左边=ln3+ln7=ln21 右边=1 显然不等式成立
③假设n=k-1时成立 k≥3
即ln(1+1·2)+ln(1+2·3)+……+ln(1+(k-1)k)>2k-5
那么n=k时
ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k+1))
=ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k-1))+ln(1+k(k+1))
>2k-5+ln(1+k(k+1))
∵当k≥3时 ln(1+k(k+1))>2
∴ln(1+1·2)+ln(1+2·3)+……+ln(1+k(k+1))
>2k-5+2=2k-3
也满足不等式
综上所述ln(1+1·2)+ln(1+2·3)+……+ln(1+n(n+1))>2n-3成立 n≥1
这道题我不太清楚为什么给个函数 可能没发现其用处
希望我的证法能给你启发。。。。。。
匿名用户
2012-08-13
展开全部
自己算。。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式