已知数列{an}中前n项和为Sn,且Sn=-an-(1/2)^(n-1)+2(n∈N*),令Cn=(n+1)*an/n,Tn=C1+C2+…+Cn。

比较Tn与5n/(2n+1)的大小并证明... 比较Tn与5n/(2n+1)的大小并证明 展开
巨星李小龙
2012-08-13 · TA获得超过5094个赞
知道大有可为答主
回答量:2146
采纳率:50%
帮助的人:1856万
展开全部
解:令n=1,可得a1=1/2
Sn=-an-(1/2)^(n-1)+2 (1)
S(n+1)=-a(n+1)-(1/2)^n+2 (2)
(2)-(1)得a(n+1)=-a(n+1)+an+1/2^n
变形得 2^(n+1)a(n+1)-2^nan=1
故{2^nan}是首项为1公差为1等差数列
则可求得an=n/2^n
则Cn=(n+1)/2^n
再用错位相加法求出Tn=3-(n+3)/2^n
再判断Tn-5n/(2n+1)=(n+3)/(2n+1)-(n+3)/2^n的符号即可
只需比较2n+1和2^n的大小即可(用数学归纳法证明较好,自己试一下吧)
最终结果应该是当n=1和2 时,Tn<5n/(2n+1) 当n>=3时Tn>5n/(2n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式