设N阶方阵满足A^2-2A-4E=0,求证2A-E可逆
1个回答
展开全部
已知等式两边同乘以 4 得 4A^2-8A-16E=0 ,
因此 (2A-E)(2A-3E)=19E ,
所以 |2A-E|*|2A-3E|=19 ,
由于 |2A-E| ≠ 0 ,因此 2A-E 可逆 .
因此 (2A-E)(2A-3E)=19E ,
所以 |2A-E|*|2A-3E|=19 ,
由于 |2A-E| ≠ 0 ,因此 2A-E 可逆 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
作为上海创远仪器技术股份有限公司的团队成员,我们积累了广泛的介电常数数据。这些数据覆盖了从常见物质如空气、水、塑料到专业材料如聚苯乙烯、环乙醇等的介电常数。通过精心整理和分析,我们汇编了介电常数表合集,为客户提供了宝贵的参考信息。这些数据不...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询