定积分的原函数是什么?
展开全部
cnk公式如下:
莱布尼兹公式好比二项式定理,它是用来求f(x)*g(x)的高阶导数的。
(uv)' = u'v+uv',
(uv)'‘ = u'’v+2u'v'+uv'‘
依数学归纳法,……,可证该莱布尼兹公式。
(uv)一阶导=u一阶导乘以v+u乘以v一阶导
(uv)二阶导=u二阶导乘以v+2倍u一阶导乘以v一阶导+u乘以v二阶导
(uv)三阶导=u三阶导乘以v+3倍u二阶导乘以v一阶导+3倍u一阶导乘以v二阶导+u乘以v三阶导
1、定积分的值是客观存在的,有第一类间断点的函数原函数也是存在的,只不过不能用初等函数表示,因此这个定积分的值通过牛顿莱布尼兹公式是求不出的,但是不意味着不存在,可以用数值分析中的一些方法求近似值。
2、由于定积分的定义产生的,定积分的定义是十分“狭窄”的,粗略地说,它要求函数有界,并且间断点不能太多等等,广义积分正是为了某些缺点对定积分的推广,这样推广后就可以讨论无界函数以及无穷区间上的定积分,只要看间断点或无穷远点处原函数的极限是否存在即可。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询