韦达定理怎么运用
导语:中国南宋伟大的数学家秦九韶在他1247年编写的世界数学名著《数书九章》一书中提出了数字一元三次方程与任何高次方程的解法“正负开方术”,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。那么,接下来就让我们一起来了解以下关于一元三次方程韦达定理怎么用的'具体方法吧。文章仅供大家的参考借鉴!希望文章能够帮助到大家!
韦达定理怎么运用
应用范围1:已知两个根其中的一个,就可以代入韦达定理的关系式里的任何来求得另一个根,并且还可以用另一个关系式来检验。
应用范围2:根据根与系数的关系,把已知的两个根的和的相反数做所求方程的一次项系数,两根的积做常数项,而把二次项系数作为1,这样,就能作出这个方程。
应用范围3:根据根与系数的关系,可以把所求的两个数当作一元二次方程当中的系数,然后解这个方程,那么方程的两个根就是这两个数。
应用范围4:已知一个一元二次方程,不解这个方程,求某些代数式的值(这些代数式是方程两个根的对称式)。
应用范围5:已知一个一元二次方程,不解这个方程,求作另一个方程,使它的根与原方程的根有某些特殊关系。
应用范围6:利用给出的条件,确定一个一元二次方程中某些字母系数的值。
2024-11-30 广告