已知函数f(x)=2^∣x-m∣和函数g(x)=x∣x-m∣+2m-8
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;(2)若对任意x1∈(-∞...
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.
(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;
(2)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围. 展开
(1)若m=2,写出函数f(x)的对称轴方程、并求函数g(x)的单调区间;
(2)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围. 展开
2个回答
展开全部
f(x)=
2x-m (x≥m)2m-x(x<m),则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或m≥6.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m2]单调增,[
m2,m]上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即72≤m<4.
④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
72.(舍去)
综上,m的取值范围是[
72,5]∪[6,+∞).
2x-m (x≥m)2m-x(x<m),则f(x)的值域应是g(x)的值域的子集.
①当4≤m≤8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调减,[m,+∞)上单调增,
故g(x)≥g(m)=2m-8,
所以2m-4≥2m-8,解得4≤m≤5或m≥6.
②当m>8时,f(x)在(-∞,4]上单调减,
故f(x)≥f(4)=2m-4,g(x)在[4,
m2]单调增,[
m2,m]上单调减,[m,+∞)上单调增,g(4)=4m-16>g(m)=2m-8
故g(x)≥g(m)=2m-8,所以2m-4≥2m-8,解得4≤m≤5或m≥6.
③0<m<4时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,故g(x)≥g(4)=8-2m,
所以8-2m≤1,即72≤m<4.
④m≤0时,f(x)在(-∞,m]上单调减,[m,4]上单调增,故f(x)≥f(m)=1.g(x)在[4,+∞)上单调增,
故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
72.(舍去)
综上,m的取值范围是[
72,5]∪[6,+∞).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询