1除以根号n的级数是收敛还是发散?

教育小百科达人
2021-08-09 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

1除以根号n的级数是发散。

详细证明:

令f(x)=1/x^(1/2)

f(x)在[1,+∞)上单调递减,且非负

对于无穷积分∫(1,+∞) f(x)dx=∫(1,+∞) 1/x^(1/2)dx=x^(1/2) | (1,+∞)=lim (x→+∞) x^(1/2)-1=+∞

即发散

那么,∑(n=1,N) f(n)≥∫(1,N) f(x)+f(N)≥∫(1,N) f(x)dx→+∞

即部分和无界

因此级数发散

收敛函数和发散函数:

收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。

发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。

terminator_888
2012-08-14 · TA获得超过8792个赞
知道大有可为答主
回答量:1680
采纳率:100%
帮助的人:826万
展开全部
这明显是p级数,而且p=1/2<1因此该级数发散
详细证明:
令,f(x)=1/x^(1/2)
明显,f(x)在[1,+∞)上单调递减,且非负
对于无穷积分∫(1,+∞) f(x)dx=∫(1,+∞) 1/x^(1/2)dx=x^(1/2) | (1,+∞)=lim (x→+∞) x^(1/2)-1=+∞
即发散
那么,∑(n=1,N) f(n)≥∫(1,N) f(x)+f(N)≥∫(1,N) f(x)dx→+∞
即部分和无界
因此,级数发散
有不懂欢迎追问
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
207hys
2012-08-14 · TA获得超过3231个赞
知道大有可为答主
回答量:1164
采纳率:83%
帮助的人:449万
展开全部
lim(n→∞)(1/√n)/(1/n)
=lim(n→∞)√n
=∞
≠0;
因级数∑(n=1→∞)(1/n)是发散的,所以级数∑(n=1→∞)(1/√n)也是发散的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蒋山纮
2012-08-14 · TA获得超过3.3万个赞
知道大有可为答主
回答量:3780
采纳率:0%
帮助的人:1213万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
三十四画t
2012-08-14 · TA获得超过805个赞
知道答主
回答量:330
采纳率:0%
帮助的人:151万
展开全部
收敛的吧
根号n是分母 趋近于正无穷
所以整体趋近于0
收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式