1除以根号n的级数是收敛还是发散?
6个回答
展开全部
1除以根号n的级数是发散。
详细证明:
令f(x)=1/x^(1/2)
f(x)在[1,+∞)上单调递减,且非负
对于无穷积分∫(1,+∞) f(x)dx=∫(1,+∞) 1/x^(1/2)dx=x^(1/2) | (1,+∞)=lim (x→+∞) x^(1/2)-1=+∞
即发散
那么,∑(n=1,N) f(n)≥∫(1,N) f(x)+f(N)≥∫(1,N) f(x)dx→+∞
即部分和无界
因此级数发散
收敛函数和发散函数:
收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。
发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。
展开全部
这明显是p级数,而且p=1/2<1因此该级数发散
详细证明:
令,f(x)=1/x^(1/2)
明显,f(x)在[1,+∞)上单调递减,且非负
对于无穷积分∫(1,+∞) f(x)dx=∫(1,+∞) 1/x^(1/2)dx=x^(1/2) | (1,+∞)=lim (x→+∞) x^(1/2)-1=+∞
即发散
那么,∑(n=1,N) f(n)≥∫(1,N) f(x)+f(N)≥∫(1,N) f(x)dx→+∞
即部分和无界
因此,级数发散
有不懂欢迎追问
详细证明:
令,f(x)=1/x^(1/2)
明显,f(x)在[1,+∞)上单调递减,且非负
对于无穷积分∫(1,+∞) f(x)dx=∫(1,+∞) 1/x^(1/2)dx=x^(1/2) | (1,+∞)=lim (x→+∞) x^(1/2)-1=+∞
即发散
那么,∑(n=1,N) f(n)≥∫(1,N) f(x)+f(N)≥∫(1,N) f(x)dx→+∞
即部分和无界
因此,级数发散
有不懂欢迎追问
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(n→∞)(1/√n)/(1/n)
=lim(n→∞)√n
=∞
≠0;
因级数∑(n=1→∞)(1/n)是发散的,所以级数∑(n=1→∞)(1/√n)也是发散的。
=lim(n→∞)√n
=∞
≠0;
因级数∑(n=1→∞)(1/n)是发散的,所以级数∑(n=1→∞)(1/√n)也是发散的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
收敛的吧
根号n是分母 趋近于正无穷
所以整体趋近于0
收敛
根号n是分母 趋近于正无穷
所以整体趋近于0
收敛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询