高数或数分里,紧集中的“紧”字是什么意思?为什么要叫紧集?

 我来答
科创17
2022-06-10 · TA获得超过5933个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:179万
展开全部
定义
紧集是拓扑空间内的一类特殊点集,它们的任何开覆盖都有有限子覆盖.在度量空间内,紧集还可以定义为满足以下任一条件的集合:
任意列有收敛子列且该子列的极限点属于该集合(自列紧集)
具备Bolzano-Weierstrass性质
完备且完全有界
性质
紧集具有以下性质:
紧集必然是有界的闭集,但反之不一定成立.
紧集在连续函数下的像仍是紧集.
豪斯多夫空间的紧子集是闭集.
实数空间的非空紧子集有最大元素和最小元素.
Heine-Borel定理:在Rn内,一个集合是紧集当且仅当它是闭集并且有界.
定义在紧集上的连续实值函数有界且有最大值和最小值.
定义在紧集上的连续实值函数一致连续.
直观理解
从某种意义上,紧集类似于有限集.举最简单的例子而言,在度量空间中,所有的有限集都有最大与最小元素.一般而言,无限集可能不存在最大或最小元素(比如R中的(0,1)),但R中的非空紧子集都有最大和最小元素.在很多情况下,对有限集成立的证明可以扩展到紧集.一个简单的例子是对以下性质的证明:定义在紧集上的连续实值函数一致连续.
类似概念
自列紧集:每个有界序列都有收敛的子序列.
可数紧集:每个可数的开覆盖都有一个有限的子覆盖.
伪紧:所有的实值连续函数都是有界的.
弱可数紧致:每个无穷子集都有极限点.
在度量空间中,以上概念均等价于紧集.
以下概念通常弱于紧集:
相对紧致:如果一个子空间Y在母空间X中的闭包是紧致的,则称Y是相对紧致于X.
准紧集:若空间X的子空间Y中的所有序列都有一个收敛的子序列,则称Y是X中的准紧集.
局部紧致空间:如果空间中的每个点都有个由紧致邻域组成的局部基,则称这个空间是局部紧致空间.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式