怎么证明秩为1的n阶方阵可以写成一个n维列向量乘以一个n维行向量

 我来答
世纪网络17
2022-06-23 · TA获得超过5908个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:138万
展开全部
很简单,既然矩阵A的秩为1,它一定能通过初等变换变换成diag(1,0,0,.0)形式
设变换矩阵为P,Q,则
PAQ = diag(1,0,...,0)
A= P'diag(1,0,...,0)Q' (P',Q'表示P,Q的逆矩阵
=P' diag(1,0,...,0) diag(1,0,0...,0) Q'判散
P' diag(1,0,...,0)等于一个除了第一列非掘答氏0的其他都是0的矩阵
diag(1,0,...,0)Q'等于一个除了第一行非0的其他都举散是0的矩阵
这两个矩阵乘积就是等价于P'diag(1,0,...,0)的第一列乘以diag(1,0,...,0) Q'的第一行
得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式