线性代数中秩的问题

(1)ABx=0,(2)Bx=0;我们知道方程组(2)中的解一定是(1)的解……所以,(2)中解向量的秩一定小于或等于(1)的解向量的秩……这是为是为什么呢?全书中有关秩... (1)ABx=0,(2)Bx=0;我们知道方程组(2)中的解一定是(1)的解……所以,(2)中解向量的秩一定小于或等于(1)的解向量的秩……这是为是为什么呢?全书中有关秩的证明题型的例题里出现的……一直没想明白……求高人指点Orz 展开
laoye20011
推荐于2016-12-01 · TA获得超过5558个赞
知道大有可为答主
回答量:1118
采纳率:100%
帮助的人:533万
展开全部
解:
(1) 解向量的秩定义:满足线性方程组的最大线性无关向量组的向量个数。即:使方程成立的解向量可能不是一个,满足方程组的线性无关的解,构成一个线性无关向量组,如果满足方程的所有解,都可以用这个线性无关向量组中向量的线性组合来表示,则该向量组称为最大线性无关向量组,其所包含的线性无关向量个数就是解向量的秩。
(2) 问题的理解:满足Bx=0的解,一定满足 ABx=0;也就是凡是用Bx =0 的最大线性无关组表示的向量,都可以用ABx = 0 的最大线性无关组表示;反之ABx = 0 的最大线性无关组表示的向量不应能用Bx =0 的最大线性无关组表示,这说明Bx=0 解集中线性无关向量的个数不会多于ABx=0解集中的线性无关向量个数。
或者换一种说法Bx =0的解集是ABx=0的解集的子集,一个解集的秩不会小于其子集的秩。
yuejiong163
2012-08-15 · TA获得超过206个赞
知道小有建树答主
回答量:178
采纳率:0%
帮助的人:174万
展开全部
因为方程组(2)中的解一定是(1)的解
所以方程组(2)中的解一定可以用(1)的解线性表示出来
可以举个例子设(1)的基础解系=(a1,a2,a3) (2)=(b1,b2,b3)
也即(1)x=(2)有非零解故
R(1)=R[(1),(2)]>=R(2)
故(1)的基础解系的秩一定大于等于(2)的解向量的秩
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式