求1/根号下(x的平方+1)的三次方的不定积分
展开全部
令x=tan t 则:dx=sec^2(t)dt
原式=∫sec^2(t)dt/sec^3(t)=∫cos tdt=sin t+C=sin(arctan x)+C=x/√(x^2+1)+C
验证:[x(x^2+1)^(-1/2)+C]'=(x^2+1)^(-1/2)-1/2*2* x^2 (x^2+1)^(-3/2)
=[x^2+1-x^2](x^2+1)^(-3/2)=1/](x^2+1)^(3/2) 完全正确.
原式=∫sec^2(t)dt/sec^3(t)=∫cos tdt=sin t+C=sin(arctan x)+C=x/√(x^2+1)+C
验证:[x(x^2+1)^(-1/2)+C]'=(x^2+1)^(-1/2)-1/2*2* x^2 (x^2+1)^(-3/2)
=[x^2+1-x^2](x^2+1)^(-3/2)=1/](x^2+1)^(3/2) 完全正确.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询