离散型随机变量的期望和方差是什么?
1个回答
展开全部
离散型随机变量的方差:D(X) = E{[X - E(X)]^2}=E(X^2) - (EX)^2.(2)。
X和X^2都是随机变量,针对于某次随机变量的取值, 例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期丛蠢望 E(X^2) = 0^2 * q + 1^2 * p = p。
离散型随机变量的概率分布基本性质:
对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为:P{X∈A}=∑Pn特别的,如果一个试验所包含的事件只有两个,其概率分布为:P{X=x1}=p(0<p<1),P{X=x2}=1-p=q。
这种分布称为两点分布。 如果x1=1,x2=0,有P{X=1}=p,P{X=0}=q。
这时称X服从参数为p的0-1分布,它是离散型随机变量分布渗行陪中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的带腔一种结果称为“成功”,另一种称为“失败”。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询