
积分中值定理的证明是什么?
展开全部
积分中值定理的证明是:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)。
推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分。
正切定理:
(a + b) / (a - b) = tan((α+β)/2) / tan((α-β)/2)。
法兰西斯·韦达曾在他对三角法研究的第一本著作《应用于三角形的数学法则》中提出正切定理。现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。

2025-04-21 广告
基本释义,integrating sphere。具有高反射性内表面的空心球体。用来对处于球内或放在球外并靠近某个窗口处的试样对光的散射或发射进行收集的一种高效能器件。球上的小窗口可以让光进入并与检测器靠得较近。积分球又称为光通球,是一个中空...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询