空间向量及其运算有哪些?
1个回答
展开全部
运算如下:
1、共线向量定理。
两个空间向量a,b向量(b向量不等于0),a//b的充要条件是存在唯一的实数λ,使a=λb。
2、共面向量定理。
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。
3、空间向量分解定理。
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
相关问题
立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。
这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询