已知2X-1的绝对值+(3Y+4)的平方=0 求X的平方Y的平方的值

 我来答
可杰17
2022-11-16 · TA获得超过950个赞
知道小有建树答主
回答量:309
采纳率:100%
帮助的人:56.5万
展开全部

已知2X-1的绝对值+(3Y+4)的平方=0 求X的平方Y的平方的值

因为:2X-1的绝对值+(3Y+4)的平方=0
又因为绝对值、一个数的平方都是非负数
所以只能都等于0,即 2x-1=0,3y+4=0,所以x=1/2,y=-4/3
所以 X的平方Y的平方=4分之1×9分之16=9分之4

比较2的0.2次方,1/2的平方,log2的1/2的对数的大小

log2的1/2的对数<1/2的平方<2的0.2次方

2的0.2次方≈1.15
1/2的平方=0.25
log2的1/2的对数=-1

计算(-2)的2005次方+3×(-2)的2004次方的值为( ) A.-2的2004次方 B.2d的2004次方 c

(-2)^2005+3*(-2)^2004
=(3-2)*(-2)^2004
=2^2004
选B

已知a的立方乘a的m次方乘a的2m+1次方=a的25次方,求m的值。快快快!

a^3*a^m*a^2m+1=a^25

a^3m+4=a^25(积的乘方)
所以3m+4=25
m=7
祝你学习进步,望采纳!

分解因式 x的平方(m-n)+y的立方(n-m);(x的平方+9)的平方-36x的平方

(x+y)(x-y)(m-n) x^4-18x^2+81=(x^2-9)^2

适合a 7的绝对值 a-1的绝对值=8的所有整数a的值的和是多少

解丨a+7丨+丨a-1丨=8
当a≥1
a+7+a-1=8
2a=2
a=1
当a=-7,显然成立
和是1-7=-6

求函数f(x)=(e的x次方-a)的平方+(e的-x次方-a)的平方(0<a<2)的最小值

答案是零,你现用换元思想,把e的x次方看成一整体y,那e的-x就是y的倒数,然后在开方,你在看得出来的式子阿在就知道了吧,如果不明白可在问,当x为零时最小值为零

关于x的方程mx的平方-(2m+1)x+m=0的根的判别式的值是9,则m=?

因为 原方程判别式为 [-(2m+1)]的平方-4m的平方=4m+1=9
所以 m=2

(1) 求满足sinα>√3/2的角α的取值范围,(2)求满足sinα>cosα的角的α的取值范围

(1),∵sinx,在 x∈(2kπ-π/2, 2kπ+π/2)是增函数,
sinα=√3/2, α=2kπ+π/3.
sinα>√3/2, α>π/3,
但(sinα)max=1,则α=2kπ+π/2.
∴sinα>√3/2时,α的取值范围为:α∈(2kπ+π/3, 2kπ+π/2).
(2). ∵sinα>cosα.
∴sinα-cosα>0.
√2sin(α-π/4)>0.
α-π/4>2kπ. ---α>2kπ+π/4; (α角的终边在y=x直线段在第Ⅰ象限部分的上方)
或,α-π/4<2kπ+π, --->α<π+π/4=5π/4. (α角的终边在y=x直线段在第Ⅲ象限部分的上方).
∴ 要满足sinα>cosα,则α的取值范围是:2kπ+π/4<α<2kπ+5π/4.

已知3的a次方=10,以6为底的25的对数=b。用a,b表示以4为底的45的对数

3^a=10,log6 25=b。用a,b表示以log4 45=?
aln3=ln10=ln5+ln2,b=log6 25=ln25/ln6=2ln5/(ln2+ln3)
aln3=ln5+ln2,b=2ln5/(ln2+ln3)
aln3=ln5+ln2,2ln5=bln2+bln3
ln3=[(2+b)/(2a-b)]ln2
ln5=[b(a+1)/(2a-b)]ln2
log4 45=ln45/ln4
=(2ln3+ln5)/(2ln2)
={2[(2+b)/(2a-b)]ln2+[b(a+1)/(2a-b)]ln2}/(2ln2)
=[2(2+b)/(2a-b)+b(a+1)/(2a-b)]/2
=(4+3b+ab)/(4a-2b)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。... 点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式