求∫cos(ln(1/(1-x)))dx
展开全部
I = ∫cos{ln[1/(1-x)]}dx = ∫cos{-ln(1-x)}dx = ∫cos[ln(1-x)]dx
令 ln(1-x) = u, 则 1-x = e^u, x = 1- e^u, dx = -e^udu,
I = -∫cosue^udu = -∫cosude^u = -e^ucosu + ∫e^udcosu
= -e^ucosu - ∫e^usinudu = -e^ucosu - ∫sinude^u
= -e^ucosu - e^usinu + ∫e^ucosudu = -e^u(cosu+sinu) - I
I = -(1/2)e^u(cosu+sinu) + C
= -(1/2)e^[ln(1-x)]{(cos[ln(1-x)]+sin[ln(1-x)]} + C
= -(1/2)(1-x){cos[ln(1-x)] + sin[ln(1-x)]} + C
令 ln(1-x) = u, 则 1-x = e^u, x = 1- e^u, dx = -e^udu,
I = -∫cosue^udu = -∫cosude^u = -e^ucosu + ∫e^udcosu
= -e^ucosu - ∫e^usinudu = -e^ucosu - ∫sinude^u
= -e^ucosu - e^usinu + ∫e^ucosudu = -e^u(cosu+sinu) - I
I = -(1/2)e^u(cosu+sinu) + C
= -(1/2)e^[ln(1-x)]{(cos[ln(1-x)]+sin[ln(1-x)]} + C
= -(1/2)(1-x){cos[ln(1-x)] + sin[ln(1-x)]} + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询