排列与组合的区别 怎样去区别排列与组合,是不是和顺序有关,请举出实例.
1个回答
展开全部
排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志.下面通过实例来体会排列与组合的区别.
【例题】 判断下列问题是排列问题还是组合问题?并计算出种数.
(1) 高二年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2) 高二数学课外活动小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3) 有2、3、5、7、11、13、17、19八个质数:①从中任取两个数求它们的商,可以有多少个不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4) 有8盆花:①从中选出2盆分别给甲、乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
【思考与分析】 (1) ①由于每两人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关,是排列;②由于每两人互握一次手,甲与乙握手、乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1) ①是排列问题,共通了=110(封);②是组合问题,共需握手==55(次)
(2) ①是排列问题,共有=10×9=90(种)不同的选法;②是组合问题,共=45(种)不同的选法;
(3) ①是排列问题,共有=8×7=56(个)不同的商;②是组合问题,共有=28(个)不同的积;
(4) ①是排列问题,共有=56(种)不同的选法;②是组合问题,共有=28(种)不同的选法.
【反思】 区分排列与组合的关键是“有序”与“无序”.
【例题】 判断下列问题是排列问题还是组合问题?并计算出种数.
(1) 高二年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2) 高二数学课外活动小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3) 有2、3、5、7、11、13、17、19八个质数:①从中任取两个数求它们的商,可以有多少个不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4) 有8盆花:①从中选出2盆分别给甲、乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
【思考与分析】 (1) ①由于每两人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关,是排列;②由于每两人互握一次手,甲与乙握手、乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1) ①是排列问题,共通了=110(封);②是组合问题,共需握手==55(次)
(2) ①是排列问题,共有=10×9=90(种)不同的选法;②是组合问题,共=45(种)不同的选法;
(3) ①是排列问题,共有=8×7=56(个)不同的商;②是组合问题,共有=28(个)不同的积;
(4) ①是排列问题,共有=56(种)不同的选法;②是组合问题,共有=28(种)不同的选法.
【反思】 区分排列与组合的关键是“有序”与“无序”.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询