用数学归纳法证明x的n次方-y的n次方(n为自然数)能被x-y整除

 我来答
世纪网络17
2022-08-16 · TA获得超过5958个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
当n=1时,显然x^1-y^1=x-y它能被x-y整除.假设当n=k时,x^k-y^k能被x-y整除,则当n=k+1时x^(k+1)-y^(k+1)=x^(k+1)-x^k*y+x^k*y-y^(k+1)=x^k(x-y)+y(x^k-y^k)显然x-y整除x^k(x-y),而由假设x-y能整除x^k-y^k所以x-y能整除...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式