如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点
(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论....
(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.
展开
展开全部
更多追问追答
追问
△OMN应该是等腰直角三角形吧,你在补上我就选你
追答
∵∠ONA为△NCO的外角
∴∠ONA=∠NOC+∠C=∠NOC+45°
∵△AON≌△BOM
∴∠ONB=∠ONA=∠NOC+45°
∵∠ONB+∠B+∠BOM=180°
∴∠NOC+45°+45°+∠BOM=180°
∴∠NOC+∠BOM=90°
∴∠MON=90°
∵NO=MO
∴△OMN为等腰直角三角形
考虑不是太周全,谢谢指点!~
展开全部
1)因为直角三角形的斜边中点是三角形的外心,
所以
O到△ABC的三个顶点A、B、C距离相等;
2)△OMN是等腰直角三角形。
证明:连接OA,如图,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO
中,
AN=BM
,∠NAO=∠B
,AO=BO
,
∴△NAO≌
△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
所以
O到△ABC的三个顶点A、B、C距离相等;
2)△OMN是等腰直角三角形。
证明:连接OA,如图,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO
中,
AN=BM
,∠NAO=∠B
,AO=BO
,
∴△NAO≌
△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)OA=OB=OC
(2)等腰直角三角形
OA=OB,AN=BN;∠OAN=∠OBM;所以△OAN全等于△OBM;所以ON=OB
所以∠OMB=∠ONA
即∠ONM+∠ANM=180-∠OMN-∠AMN
因为∠OMN=∠ONM,∠ANM+∠AMN=90;所以2∠ONM=90。
所以OM=ON,∠NOM=90;得证。
(2)等腰直角三角形
OA=OB,AN=BN;∠OAN=∠OBM;所以△OAN全等于△OBM;所以ON=OB
所以∠OMB=∠ONA
即∠ONM+∠ANM=180-∠OMN-∠AMN
因为∠OMN=∠ONM,∠ANM+∠AMN=90;所以2∠ONM=90。
所以OM=ON,∠NOM=90;得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1).根据直角三角形中斜边的中线等于斜边的一半,可得到OA=OB=OC;
2)△OMN是一等腰直角三角形;
证明:连接OA,则根据边角边定理很容易证的三角形△OCN与△OAM全等,从而知道<CON=<AOM,同理可知<NOA=<MOB,所以<NOM=90°,同时根据△OCN与△OAM的全等也可以知道ON=OM,所以△OMN为等腰直角三角形;
2)△OMN是一等腰直角三角形;
证明:连接OA,则根据边角边定理很容易证的三角形△OCN与△OAM全等,从而知道<CON=<AOM,同理可知<NOA=<MOB,所以<NOM=90°,同时根据△OCN与△OAM的全等也可以知道ON=OM,所以△OMN为等腰直角三角形;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、OA=OB=OC=1/2=BC
2、联结OA,则∠CAO=∠B=45,AN=BM,OA=OB
∴△AON≌△BOM,∴ON=OM
∴△OMN是等腰三角形。
数学情缘团队为你解难
2、联结OA,则∠CAO=∠B=45,AN=BM,OA=OB
∴△AON≌△BOM,∴ON=OM
∴△OMN是等腰三角形。
数学情缘团队为你解难
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询