已知数列an的通项公式an=(2n-1)*1/2的n次方,求Sn?
展开全部
采用Sn-q倍Sn,错位相减法!
an=(2n-1)*(1/2)^n Sn
=1*(1/2)+3*(1/2)^2+5*(1/2)^3+……+(2n-1)*(1/2)^n 0.5Sn
=1*(1/2)^2+3*(1/2)^3+……+(2n-3)*(1/2)^n+(2n-1)*(1/2)^(n+1)
两式相减:
0.5Sn=1*(1/2)+2*(1/2)^2+2*(1/2)^3+……+2*(1/2)^n-(2n-1)*(1/2)^(n+1)
Sn=1+4*[(1/2)^2+(1/2)^3+……+(1/2)^n]-2(2n-1)*(1/2)^(n+1)
=3-4*(1/2)^n+(2n-1)*(1/2)^n
,8,
an=(2n-1)*(1/2)^n Sn
=1*(1/2)+3*(1/2)^2+5*(1/2)^3+……+(2n-1)*(1/2)^n 0.5Sn
=1*(1/2)^2+3*(1/2)^3+……+(2n-3)*(1/2)^n+(2n-1)*(1/2)^(n+1)
两式相减:
0.5Sn=1*(1/2)+2*(1/2)^2+2*(1/2)^3+……+2*(1/2)^n-(2n-1)*(1/2)^(n+1)
Sn=1+4*[(1/2)^2+(1/2)^3+……+(1/2)^n]-2(2n-1)*(1/2)^(n+1)
=3-4*(1/2)^n+(2n-1)*(1/2)^n
,8,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询