已知A(1,0),点B为曲线x^2+y^2=1上一动点,求满足向量AP+向量BP=0的点P的轨迹方程

 我来答
科创17
2022-09-09 · TA获得超过5933个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:179万
展开全部
向量AP+向量BP=0,则P为A、B(x,y)的中点
P(x1,y1)=((x+1)/2,y/2)
所以x=2x1-1,y=2y1
代入圆的方程,整理得
(x1-1/2)^2+y1^2=(1/2)^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式