x趋近于0时, x/ x^ x有极限吗?
1个回答
展开全部
只能是x→0+,极限是1
解过程:
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
扩展资料:
设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。这种渐进稳定性与收敛性是等价的。即为充分必要条件。
数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询