已知x^2-3x+1=0,求分式x^2/(x^4+3x^2+1)的值
已知x^2-3x+1=0,求分式x^2/(x^4+3x^2+1)的值
x^2-3x+1=0
x-3+1/x=0
x+1/x=3
(x+1/x)^2=9
x^2+1/x^2+2=9
x^2+1/x^2=7
x^2/x^4+3x^2+1
=1/(x^2+3+1/x^2)
=1/(7+3)
=1/10
已知X^2-3x+1=0,求代数式X^2/x^4+3x^2+1
主要是代入消元
X^2-3x+1=0可得X^2=3x-1
把X^2/x^4+3x^2+1 降次可得到子含有X的方程
再把X^2-3x+1=0的解求出代入
已知x^2-3x+1=0,则分式x^2/(x^4+4x^2+1)的值为
x^2-3x+1=0
x^2+1=3x
x^2/(x^4+4x^2+1)
=x^2/(x^2+1)^2
=x^2/9x^2
=1/9
已知x^2-3x+1=0,求x^2/x^4+x^2+1的值
∵x^2-3x+1=0
∴x^2=3x-1
∴x^4=(x^2)^2=(3x-1)^2=9x^2+1-6x
代入x^2/x^4+x^2+1 ①中
原式=x^2/(9x^2+1-6x+x^2+1)=x^2/(10x^2-6x+2) ②
∵x^2-3x+1=0
∴-3x+1=-x^2
∴-6x+2=-2x^2 ③
把③代入②可得原式=x^2/(10x^2+2x^2)=x^2/(8x^2)=1/8
若x/x^2-3x+1=2,求分式x^2/x^4+x^2+1的值
x/x^2-3x+1=2
则(x^2-3x+1)/x=1/2
所以x-3+1/x=1/2
所以x+1/x=7/2
两边平方,得x²+1/x²+2=49/4
所以x²+1/x²=41/4
分式x^2/x^4+x^2+1=1/(x²+1+1/x²)=1/(41/4+1)=4/45
已知x/x^2-3x+1=1,求x^2/x^4-9x^2+1的值
x/x^2-3x+1=1则x/x^2-3x=0
即x/x^2=3x
所以(x/x^2)^2=(3x)^2
所以x^2/x^4-9x^2=0
所以x^2/x^4-9x^2+1=1
希望你能满意,谢谢
已知x/x^2-2x+1=1/3,求分式x^2/x^4-3x^2+1的值
x^2 -2x +1 =3x
x^2 = 5x-1
x^4 = 25x^2 -10x +1
x^4 -3x^2 +1 =25x^2 -25x +5
=125x -25 -25x +5
=100x -20
=20(5x-1) =20x^2
原式= 1/20
已知x/(x^2-3x+1)=1/7,求x^2/(x^4+x^2+1)的值。
x/(x^2-3x+1)=1/7
∴(x²-3x+1)/x=7
即x-3+1/x=7
x+1/x=10
平方得 x²+2+1/x²=100
x²+1/x²=98
(x^4+x^2+1)/x²
=x²+1+1/x²
=98+1
=99
∴x^2/(x^4+x^2+1)=1/99