已知a,b∈R+,且a+b=4,求1∕a+1∕b的最小值

 我来答
华源网络
2022-08-21 · TA获得超过5602个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
1∕a+1∕b=(1∕a+1∕b)*(4/4)
=(1∕a+1∕b)*[(a+b)/4]
=1/2+(a/4b+b/4a)
利用基本不等式,可得:(a/4b+b/4a) ≥1/2
所以,可得:原式≥1/2+1/2=1
即:1∕a+1∕b的最小值是1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式