怎么求椭圆的中点弦公式?
1个回答
展开全部
椭圆中点弦公式
椭圆C:x^2/a^2+y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为:
αx/a^2+βy/b^2=α^2/a^2+β^2/b^2。
中点弦存在的条件:α^2/a^2+β^2/b^2<1(点P在椭圆内)。
扩展资料:
1、双曲线中点弦公式
双曲线C:x^2/a^2-y^2/b^2=1上,过给定点P=(α,β)的中点弦所在直线方程为:
αx/a^2-βy/b^2=α^2/a^2-β^2/b^2。
中点弦存在的条件:(α^2/a^2-β^2/b^2)(α^2/a^2-β^2/b^2-1)>0(点P不在双曲线、渐近线上以及它们所围成的区域内)。
2、抛物线中点弦公式
抛物线C:x^2(这里x^2表示x的平方,下同)=2py上,过给定点P=(α,β)的中点弦所在直线方程为:py-αx=pβ-α^2。
中点弦存在的条件:2pβ>α^2(点P在抛物线开口内)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询