您好,y=arcsinx反正弦函数,图象如图所示:
反正弦函数(反三角函数之一)为正弦函数y=sinx(x∈[-½π,½π])的反函数,记作y=arcsinx或siny=x(x∈[-1,1])。由原函数的图像和它的反函数的图像关于一三象限角平分线对称可知正弦函数的图像和反正弦函数的图像也关于一三象限角平分线对称。
拓展内容:反正弦函数求导:对y=arcsinx,
y=arcsinx,所以得到
siny=x 等式两边对x求导
y'cosy=1
于是y'=1/cosy=1/√(1-sin^2(y))
即 y'= 1/√(1-x^2)