数学建模摘要怎么写
数学建模摘要按照以下的格式来写:
(1)目的。在建模论文中的目的主要叙述建模所涉及的主题范围。建议一道两句话合适。
(2)方法。方法就是接下来是建模时所用到的方法,包括所用的模型理论、模型的假设条件、文章的材料、解决问题的手段、写程序所用到的软件工具等。
(3)结果。结果包括在建模时观察到的结论、模拟实验的结果,数据可视化中得到的效果,算法的性能等。
(4)讨论。讨论包括模型结果的分析、比较、评价、应用,以及存在的问题,在以后模型的推广的的启发,建议和预测等。
(5)其他。这些内容不属于以上四种但具有重要的信息价值。这样的展示也会使得你的论文得到加分。
在摘要写作时,在保证摘要结构完整、逻辑通顺的前提下,可适当强调研究中的创新之处。当然尽量不要使用评价性语言,多包括论文中的主要论点和重要细节。在书写时表达要准确、简洁、清楚;一定要注意表述的逻辑性,避免太长的句子。能够使得评卷人快速get到重点。
在摘要写作时避免简称引用,对于某些模型不要使用字母简称,除非他人尽皆知。在第一次时要写全称,容易让评阅人容易理解你用的啥。也会避免歧义。还要注意不能在摘要中引用文献或者插入图表。
2024-10-28 广告
随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。
通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。
关键词:数学建模;综合素质;教学;数学应用。
数学建模的概念
数学建模非常广泛、简单,它一直与生活、学习息息相关。例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。数学建模就是应用数学模型来解决各种实际问题的方法。
也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。它是用数学方法解决各种实际问题的桥梁。