初二数学问题,动点。
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当△ADQ的面积与正方形ABCD面积之比为1:6时,求BQ的长度,并直接写出此时点P在AB上的位置. 展开
(1) ∵AQ=AQ , ∠DAC=∠CAB=45, AB=AD , ∴△ADQ≌△ABQ
(2)QE是ΔADQ的高,AD*EQ/2=4*4/6,EQ=4/3
∵EQ∥AP1,AE=EQ=4/3,DE=4-4/3=8/3
∴AP1/AD=EQ/ED
AP1=4*(4/3)/(8/3)=2
即点P运动到AB的中点位置时,△ADQ的面积是正方形ABCD面积的1/6;
(3)如图易知当点P运动到B、C点时,ΔADQ1和ADQ3都是等腰三角形。
若AD=AQ2=4时,ΔADQ2也是等腰三角形
此时CQ2=4√2-4,FQ2=FC=4-2√2,
CP2/FP2=FQ2/DC
CP2/(CP2-4+2√2)=4/(4-2√2)
解得CP2=4√2-4
即P2运动到距C (4√2-4)时ΔADQ2是等腰三角形。
2、
当△ADQ的面积与正方形ABCD面积之比为1:6时
也就是:1/2 x AD x EQ=1/6 x AB x AD
即: EQ=1/3 x AB=1/3 x 6 = 2
因为 : <EAQ=45°
所以 : AE=EQ=2
所以 : DE=AD-AE=6-2=4
在 △DEQ和△DAP中有以下关系:
EQ/AP=DE/AD
即:2 /AP=4 /6
SO: AP=3
第二问:借助
→感谢提供,修改
当△ADQ的面积与正方形ABCD面积之比为1:6时
也就是:1/2 x AD x EQ=1/6 x AB x AD
即: EQ=1/3 x AB=1/3 x 6 = 2
因为 : <EAQ=45°
所以 : AE=EQ=2
所以 : DE=AD-AE=6-2=4
在 △DEQ和△DAP中有以下关系:
EQ/AP=DE/AD
即:2 /AP=4 /6
SO: AP=3
(2)QE是ΔADQ的高,AD*EQ/2=4*4/6,EQ=4/3
∵EQ∥AP1,AE=EQ=4/3,DE=4-4/3=8/3
∴AP1/AD=EQ/ED
AP1=4*(4/3)/(8/3)=2
即点P运动到AB的中点位置时,△ADQ的面积是正方形ABCD面积的1/6;
当△ADQ的面积与正方形ABCD面积之比为1:6时
也就是:1/2 x AD x EQ=1/6 x AB x AD
即: EQ=1/3 x AB=1/3 x 6 = 2
因为 : <EAQ=45°
所以 : AE=EQ=2
所以 : DE=AD-AE=6-2=4
在 △DEQ和△DAP中有以下关系:
EQ/AP=DE/AD
即:2 /AP=4 /6
SO: AP=3
第一问不需计算;第二问不需开方。
第一问:正方形是吧?AC把正方形平分了是吧?那么<DAA=<BAQ=45°是吧?那么△DAQ和△BAQ中,有两个角是相等的,并且这两个角的相邻边:AQ=AQ,AB=AD.那么这两个三角形就全等了。根本就不用计算。
第二问:借助
当△ADQ的面积与正方形ABCD面积之比为1:6时
也就是:1/2 x AD x EQ=1/6 x AB x AD
即: EQ=1/3 x AB=1/3 x 6 = 2
因为 : <EAQ=45°
所以 : AE=EQ=2
所以 : DE=AD-AE=6-2=4
在 △DEQ和△DAP中有以下关系:
EQ/AP=DE/AD
即:2 /AP=4 /6
所以。 AP=3