设f(x)=∫<x,x+π/2>|sint|dt,求f(x)在区间[-41π/4,41π/4]上的最大值与最小值
展开全部
sint的对称轴为x=π/2+kπ,k∈Z,对称中心为(kπ,0),k∈Z.
x+π/2-x=π/2,因而f(x)在R上的最大值与最小值分别为
f(π/2+kπ-(π/2)/2)=f(kπ+π/4),
f(kπ-(π/2)/2)=f(kπ-π/4).
令kπ+π/4∈[-41π/4,41π/4],
则解得k∈[-21/2,10],
令kπ-π/4∈[-41π/4,41π/4],
则解得k∈[-10,21/2],
所以k∈[-10,10],k∈Z.
因而f(x)在区间[-41π/4,41π/4]上的最大值与最小值就是f(x)在R上的最大值与最小值
maxf(x)=f(kπ+π/4)=∫<kπ+π/4,kπ+π/4+π/2>|sint|dt=∫<π/4,π/4+π/2>|sint|dt
=∫<π/4,3π/4>sintdt=-cos(3π/4)-(-cos(π/4))=√2/2+√2/2=√2
minf(x)=)=∫<kπ-π/4,kπ-π/4+π/2>|sint|dt=∫<-π/4,-π/4+π/2>|sint|dt
=∫<-π/4,π/4>|sint|dt=∫<-π/4,0>|sint|dt+∫<0,π/4>|sint|dt=2∫<0,π/4>sintdt
=2(-cos(π/4)-(-cos0))=2(-√2/2+1)=2-√2
f(x)在区间[-41π/4,41π/4]上的最大值为√2,最小值2-√2.
x+π/2-x=π/2,因而f(x)在R上的最大值与最小值分别为
f(π/2+kπ-(π/2)/2)=f(kπ+π/4),
f(kπ-(π/2)/2)=f(kπ-π/4).
令kπ+π/4∈[-41π/4,41π/4],
则解得k∈[-21/2,10],
令kπ-π/4∈[-41π/4,41π/4],
则解得k∈[-10,21/2],
所以k∈[-10,10],k∈Z.
因而f(x)在区间[-41π/4,41π/4]上的最大值与最小值就是f(x)在R上的最大值与最小值
maxf(x)=f(kπ+π/4)=∫<kπ+π/4,kπ+π/4+π/2>|sint|dt=∫<π/4,π/4+π/2>|sint|dt
=∫<π/4,3π/4>sintdt=-cos(3π/4)-(-cos(π/4))=√2/2+√2/2=√2
minf(x)=)=∫<kπ-π/4,kπ-π/4+π/2>|sint|dt=∫<-π/4,-π/4+π/2>|sint|dt
=∫<-π/4,π/4>|sint|dt=∫<-π/4,0>|sint|dt+∫<0,π/4>|sint|dt=2∫<0,π/4>sintdt
=2(-cos(π/4)-(-cos0))=2(-√2/2+1)=2-√2
f(x)在区间[-41π/4,41π/4]上的最大值为√2,最小值2-√2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询