若1/2≤x≤3,不等式-x^2+2mx-m^2+2m≤1恒成立,求实数m的取值范围.
展开全部
不等式-x^2+2mx-m^2+2m≤1
即-(x-m)^2+2m-1≤0
即 (x-m)^2-2m+1≥0 当1/2≤x≤3时恒成立
设f(x)=(x-m)^2-2m+1,需f(x)min≥0
当1/2≤m≤3时,f(x)min=1-2m≥0,m≤1/2
∴m=1/2
当m<1/2时,f(x)在[1/2,3]上递增
f(x)min=f(1/2)=5/4-3m+m²≥0
==> m≤ 1/2或 m≥5/2(舍)
∴m<1/2
当m>3时,f(x)在[1/2,3]上递减
∴f(x)min=f(3)=m²-8m+10≥0
===> m≤4-√6或m≥4+√6
∴m≥4+√6
综上,符合条件的m的取值范围是
m≤1/2或m≥4+√6
即-(x-m)^2+2m-1≤0
即 (x-m)^2-2m+1≥0 当1/2≤x≤3时恒成立
设f(x)=(x-m)^2-2m+1,需f(x)min≥0
当1/2≤m≤3时,f(x)min=1-2m≥0,m≤1/2
∴m=1/2
当m<1/2时,f(x)在[1/2,3]上递增
f(x)min=f(1/2)=5/4-3m+m²≥0
==> m≤ 1/2或 m≥5/2(舍)
∴m<1/2
当m>3时,f(x)在[1/2,3]上递减
∴f(x)min=f(3)=m²-8m+10≥0
===> m≤4-√6或m≥4+√6
∴m≥4+√6
综上,符合条件的m的取值范围是
m≤1/2或m≥4+√6
展开全部
不等式-x^2+2mx-m^2+2m≤1
即-(x-m)^2+2m-1≤0
即 (x-m)^2-2m+1≥0 当1/2≤x≤3时恒成立
设f(x)=(x-m)^2-2m+1,需f(x)min≥0
当1/2≤m≤3时,f(x)min=1-2m≥0,m≤1/2
∴m=1/2
当m<1/2时,f(x)在[1/2,3]上递增
f(x)min=f(1/2)=5/4-3m+m²≥0
==> m≤ 1/2或 m≥5/2(舍)
∴m<1/2
当m>3时,f(x)在[1/2,3]上递减
∴f(x)min=f(3)=m²-8m+10≥0
m≤4-√6或m≥4+√6
∴m≥4+√6
综上, m≤1/2或m≥4+√6
即-(x-m)^2+2m-1≤0
即 (x-m)^2-2m+1≥0 当1/2≤x≤3时恒成立
设f(x)=(x-m)^2-2m+1,需f(x)min≥0
当1/2≤m≤3时,f(x)min=1-2m≥0,m≤1/2
∴m=1/2
当m<1/2时,f(x)在[1/2,3]上递增
f(x)min=f(1/2)=5/4-3m+m²≥0
==> m≤ 1/2或 m≥5/2(舍)
∴m<1/2
当m>3时,f(x)在[1/2,3]上递减
∴f(x)min=f(3)=m²-8m+10≥0
m≤4-√6或m≥4+√6
∴m≥4+√6
综上, m≤1/2或m≥4+√6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询