用泰勒公式求极限应该怎么做?

比如说,lim(x–>0){1+1/2(x^2)-(1+x^2)^(1/2)}/{(cosx-e^(x^2))sin(x^2)}怎么破?... 比如说,lim(x–>0){1+1/2(x^2)-(1+x^2)^(1/2)}/{(cosx-e^(x^2))sin(x^2)}怎么破? 展开
2574934018
推荐于2017-11-25 · TA获得超过4527个赞
知道小有建树答主
回答量:1212
采纳率:85%
帮助的人:496万
展开全部
就是记住闹橘那五六个基本函数的展开式,遇到类似的函数极限时,如果等价无穷小和罗比达法则什么的不好用或者较复杂时,可以考虑泰勒级数展开求极限,至于展开到几阶,一般视分子或者分母而定,如果是两个相加或者相减函数的展开,那么就是展开,遇到系数不为零的那个无穷小出现为止。
lim(x–>0){1+1/2(x^2)-(1+x^2)^(1/2)}/{(cosx-e^(x^2))sin(x^2)}
首先分子中的(1+x^2)^(1/2)这一项需要进行展开,由于分子中还有1+1/2(x^2)这一项,所以你只需要把他展开到x的4次项就可以了液察团。这也就是我前面所讲的展开到系数不为零的那一项出现为止
然后没茄,由于分子等价于x^4/8,所以分母也往这个方向靠就行了。由于分母中有一个sin(x*x)等价于x^2,所以前面的cosx-e^(x^2)当然也仅需要展开到x的2次方项就可以了。
因为cosx-------1-0.5x*x
e^x---------x
把上述等价无穷小带入分母即可,答案应该是 -1/12
xiongxionghy
2012-08-17 · TA获得超过2.1万个赞
知道大有可为答主
回答量:1753
采纳率:75%
帮助的人:2954万
展开全部
用泰勒公式把所有的表示式里面的非多项式部分展开成多项式滑睁散,再信氏求多项式的极限。

举例:
lim {x->早液0} (sinx)/x
=lim {x->0} (x - x^3/3! + x^5/5! - ...)/x
=lim {x->0} 1 - x^2/3! + x^4/5! - ...
=1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式