正多边形的外角 正多边形的外角怎么求
1个回答
展开全部
正多边形的外角和和正多边形的内角和一样,都是360度。与多边形的内角相对应的是外角,多边形的外角就是将其中一条边延长并与另一条边相夹的那个角。任意凸多边形的外角和都为360°。多边形所有外角的和叫做多边形的外角和。
任意正多边形的外角和=360°,与边数与内角无关;而正多边形内角和等于:(n-2)×180°(n大于等于3且n为整数)。
通常内角+外角=180度,所以每个外角中分别取一个相加,得到的和成为多边形的外角和。n边形的内角与外角的总和为n×180°,n边形的内角和为(n-2)×180°,那么n边形的外角和为360°。
这就是说多边形的外角和和边数无关。解答有关多边形内角和外角和的问题时,通常利用公式列方程来解答问题。并且,三角形的一个外角等于不相邻的两个内角之和。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询