两轻绳系一个质量为m的小球,两绳的另一端分别固定于轴的A、B两处,上面的绳长l=2m
两绳都拉直时与夹角分别30度和45度,则小球随轴转动的角速度满足什么条件时,两绳始终被拉直(g=10m·s-2)求解析过程...
两绳都拉直时与夹角分别30度和45度,则小球随轴转动的角速度满足什么条件时,两绳始终被拉直(g=10m·s-2) 求解析过程
展开
3个回答
展开全部
两绳张紧时,小球受的力如图4-2-6所示,当ω由0逐渐增大时,ω可能出现两个临界值.
(1)BC恰好拉直,但F2仍然为零,设此时的角速度为ω1,则有Fx=F1sin30°=mω12Lsin30° ①
Fy=F1cos30°-mg=0 ②
代入已知解①②得 ω1=2.40 rad/s
(2)AC由拉紧转为恰好拉直,但F1已为零,设此时的角速度为ω2,则有
Fx=F2sin45°=mω22Lsin30° ③
Fy=F2cos45°-mg=0 ④
代入已知解③④得 ω2=3.16 rad/s
可见,要使两绳始终张紧,ω必须满足
2.40 rad/s<ω<3.16 rad/s.
答案:2.40 rad/s<ω<3.16 rad/s
(1)BC恰好拉直,但F2仍然为零,设此时的角速度为ω1,则有Fx=F1sin30°=mω12Lsin30° ①
Fy=F1cos30°-mg=0 ②
代入已知解①②得 ω1=2.40 rad/s
(2)AC由拉紧转为恰好拉直,但F1已为零,设此时的角速度为ω2,则有
Fx=F2sin45°=mω22Lsin30° ③
Fy=F2cos45°-mg=0 ④
代入已知解③④得 ω2=3.16 rad/s
可见,要使两绳始终张紧,ω必须满足
2.40 rad/s<ω<3.16 rad/s.
答案:2.40 rad/s<ω<3.16 rad/s
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询