高中导数的题型及解题技巧

 我来答
gg一个名字gg
2023-04-11 · TA获得超过283个赞
知道大有可为答主
回答量:4033
采纳率:99%
帮助的人:57.4万
展开全部

高中导数的题型及解题技巧如下:

一、利用导数研究切线问题

1、解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:切点在切线上;切点在曲线上;斜率等于导数。用这三句话,百分之百可以解答全部切线问题。

2、另外,二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。

二、利用导数研究函数的单调性

解题思路:求定义域——求导——讨论参数,判断单调性。首先,务必要先求定义域,以免单调区间落在定义域之外;其次,求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后,带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。

三、利用导数研究函数的极值和最值

解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值,必须先判断单调性。而求最值,则需要依据单调性、极值和端点值来判断。

四、利用导数研究不等式

1、解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等式。从这个解题思路可以看得出,导数不等式的本质是最值问题。因此,导数不等式,就是必须先求最值。

2、利用导数不等式,绝对是超级难点,也是高考导数大题的第2小问常考的考点。大家要紧紧抓住“导数不等式就是最值问题”这句话,循序渐进地思考解题,多训练,必能完成此类题的攻克和解题。

五、利用导数研究方程

解题思路:第一步,提取参数到一边,设另一边为函数h(x);第二步,对函数h(x)求导,判断单调性,求极值,并作图;第三步,观察比较直线与曲线h(x)的交点个数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式