函数f(x)在区间[ a, b]上可积吗?
如果f(x)在[a,b]上的定积分存在,我们就说f(x)在[a,b]上可积。即f(x)是[a,b]上的可积函数。
函数可积的判断:
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为"黎曼可积"。
扩展资料:
一个闭区间[a,b]的一个取样分割是指在进行分割后,于每一个子区间中[xi,xi + 1]取出一点 。λ的定义同上。
作为曲线与坐标轴所夹面积的黎曼积分对于一在区间[a,b]上之给定非负函数f(x),我们想要确定f(x)所代表的曲线与X坐标轴所夹图形的面积。
黎曼积分的核心思想就是试图通过无限逼近来确定这个积分值。同时请注意,如f(x)取负值,则相应的面积值S亦取负值。
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限。
参考资料来源:百度百科——可积函数