数学题,求详细过程。
求和。(1)(a-1)+(a²-2)+…+(a∧n-n)(a≠0)(2)1+3×3+5×3²+…+(2n-1)×3∧n-1(3)1/1×4+1/4×7...
求和。
(1)(a-1)+(a²-2)+…+(a∧n-n)(a≠0)
(2)1+3×3+5×3²+…+(2n-1)×3∧n-1
(3)1/1×4+1/4×7+1/7×10+…+1/(3n-2)(3n+1)
(4)1/1+√2+1/√2+√3+…+1/√n+√n+1 展开
(1)(a-1)+(a²-2)+…+(a∧n-n)(a≠0)
(2)1+3×3+5×3²+…+(2n-1)×3∧n-1
(3)1/1×4+1/4×7+1/7×10+…+1/(3n-2)(3n+1)
(4)1/1+√2+1/√2+√3+…+1/√n+√n+1 展开
展开全部
(1)(a-1)+(a²-2)+…+(a∧n-n)(a≠0)
=a+a²+…+a∧n-(1+2+……n)
=(a∧n-a)/(a-1)-n(n+1)/2
(2)1+3×3+5×3²+…+(2n-1)×3∧n-1
Sn=1+3*3+5*3^2+...+(2n-1)*3^(n-1),得
3Sn=1*3+3*3^2+...+(2n-1)*3^n
错位相减得
-2Sn=1+2*3+2*3^2+2*3^3+...+2*3^(n-1)-(2n-1)*3^n
=2(3^n-n*3^n-1)
Sn=(n-1)*3^n+1
1+3×3+5×3²+…+(2n-1)×3∧n-1=(n-1)*3^n+1
(3)1/1×4+1/4×7+1/7×10+…+1/(3n-2)(3n+1)
=[1-1/4+1/4-1/7+1/7-1/10+……+1/(3n-2)-1/(3n+1)]/3
=[1-1/(3n+1)]/3
=n/(3n+1)
(4)1/(1+√2)+1/(√2+√3)+…+1/(√n+√n+1)
=√2-1+√3-√2+…+√n+1-√n
=√(n+1)-1
=a+a²+…+a∧n-(1+2+……n)
=(a∧n-a)/(a-1)-n(n+1)/2
(2)1+3×3+5×3²+…+(2n-1)×3∧n-1
Sn=1+3*3+5*3^2+...+(2n-1)*3^(n-1),得
3Sn=1*3+3*3^2+...+(2n-1)*3^n
错位相减得
-2Sn=1+2*3+2*3^2+2*3^3+...+2*3^(n-1)-(2n-1)*3^n
=2(3^n-n*3^n-1)
Sn=(n-1)*3^n+1
1+3×3+5×3²+…+(2n-1)×3∧n-1=(n-1)*3^n+1
(3)1/1×4+1/4×7+1/7×10+…+1/(3n-2)(3n+1)
=[1-1/4+1/4-1/7+1/7-1/10+……+1/(3n-2)-1/(3n+1)]/3
=[1-1/(3n+1)]/3
=n/(3n+1)
(4)1/(1+√2)+1/(√2+√3)+…+1/(√n+√n+1)
=√2-1+√3-√2+…+√n+1-√n
=√(n+1)-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询