如图,正方形ABCD内接于○O,点P在劣弧AB上,连接DP,交AC于点Q,若QP=QO,则QC:QA=??

答案是:根号3+2,,,,,求过程。。。... 答案是:根号3+2,,,,,求过程。。。 展开
mbcsjs
2012-08-18 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部

1、解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,
QA=r-m.
在⊙O中,根据相交弦定理,得QA•QC=QP•QD.
即(r-m)•(r+m)=m•QD,所以QD=(r²-m²)/ m .
连接DO,由勾股定理,得QD²=DO²+QO²,
即[(r²-m²) /m ]²=r²+m²,
解得m= √3/3   r
所以,QC/ QA =(r+m)/( r-m) = (3+√3 )/(3-√3 ) = √3 +2

2、

解:连接PB,DB; 连接OP,BQ,OP交BQ于M.
∠ABC=90°,则DB为直径, 即点O在直径DB上,得:∠DPB=90°=∠AOB;
∵QP=QO;QB=QB.
∴Rt△QOB≌Rt△QPB(HL),得:∠PQB=∠OQB;
故QB垂直平分OP;(等腰三角形"三线合一").
设圆的半径为2Y,则OM=OP/2=Y.OB=2Y.则BM=√(OB²-OM²)=√3Y;
易证:△OMQ∽△BMO,

则OQ/BO=OM/BM,OQ/(2Y)=Y/(√3Y),OQ=(2√3/2)Y.
所以,QC:QA=(OQ+OC):(OA-OQ)=[(2√3/2)Y+2Y]:[2Y-(2√3/2)Y]=2+√3. 

3、

如图,∵QP=QO,三个红角相等,∠AOB=90°=∠AOP+∠BOP=红+2红=3红。

∴红=30°;

OQ/(OP/2)=1/cos30°=2/√3.  OP=√3OQ

QA/QC=(OP+OQ)/(OP-OQ)=(√3+1)/(√3-1)=2+√3.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式