已知数列{an}的前n项和Sn=(n-1)2^n+1,是否存在等差数列{bn}

已知正项数列{an}的前n项和sn=(n-1)*2^n+1,是否存在等差数列{bn},使an=b1C上标1下标n+b2C上标2下标n+…+bnC上标n下标n对一切正整数n... 已知正项数列{an}的前n项和sn=(n-1)*2^n+1,是否存在等差数列{bn},使an=b1C上标1下标n+b2C上标2下标n+…+bnC上标n下标n对一切正整数n均成立? 展开
百度网友b130443
2012-08-18 · TA获得超过5192个赞
知道大有可为答主
回答量:1497
采纳率:63%
帮助的人:700万
展开全部
a1=S1=1
an=Sn-S(n-1)=n*2^(n-1)
n=1也符合此式,故an=n*2^(n-1)
假设存在这样的等差数列{bn},设bn=pn+q
则b1C(1,n)+b2C(2,n)+……+bnC(n,n)
=p[C(1,n)+2C(2,n)+……+nC(n,n)]+qn
设S=0*C(0,n)+C(1,n)+2C(2,n)+……+nC(n,n)
则S=nC(n,n)+(n-1)C(n-1,n)+(n-2)C(n-2,n)+……+0*C(0,n)
=nC(0,n)+(n-1)C(1,n)+(n-2)C(2,n)+……+0*C(n,n)
故2S=n[C(0,n)+C(1,n)+C(2,n)+……+C(n,n)]=n*2^n
S=n*2^(n-1)

根据以上,当p=1,q=0时符合题意,即存在bn=n,使使an=b1C上标1下标n+b2C上标2下标n+…+bnC上标n下标n对一切正整数n均成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式