
讨论函数f(x)=x+a/x的单调递增区间
1个回答
展开全部
f(x)的倒数 为 1-a/x²
=(x²-a)/x²
令导数=0
x=±√a
当x ∈(0,√a],导数小于0,函数单调递减
当x >√a,导数大于0,函数单调递减
有因为f(x)=-f(-x)
函数为奇函数
对应到 x<0
在(-∞,-√a)递增,[-√a,0)递减
所以f(x)在
(-∞,-√a),(√a,+∞ )递增,
[-√a,0),(0,√a]递减
=(x²-a)/x²
令导数=0
x=±√a
当x ∈(0,√a],导数小于0,函数单调递减
当x >√a,导数大于0,函数单调递减
有因为f(x)=-f(-x)
函数为奇函数
对应到 x<0
在(-∞,-√a)递增,[-√a,0)递减
所以f(x)在
(-∞,-√a),(√a,+∞ )递增,
[-√a,0),(0,√a]递减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询