1、证明:连接AD∵∠BAC=90,AB=AC∴∠B=∠C=45∵D是BC的中点∴AD=BD=CD (直角三角形中线特性)、∠BAD=∠CAD=∠BAC/2,AD⊥BC(三线合一)∴∠CAD=∠B,∠ADE+∠BDE=90∵BE=AF∴△BDE≌△ADF (SAS)∴DE=DF, ∠ADF=∠BDE∴∠EDF=∠ADE+∠ADF=∠ADE+∠BDF=90∴等腰直角△DEF2、证明:连接AD∵AB=AC,D是BC的中点∴∠BAD=∠CAD (三线合一)∵∠DAF=∠BAF+∠BAD,∠DAE=∠CAE+∠CAD,∠BAF=∠CAE(对顶角相等)∴∠DAF=∠DAE∵AE=BE-AB,AF=CF-AC,BE=CF∴AE=AF∵AD=AD∴△DAE≌△DAF (SAS)∴DE=DF∴等腰△DEF