数学题,初二升初三的,要过程,O(∩_∩)O谢谢

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).(温馨提示:... 如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.
展开
baby冬日阳光
2012-08-19 · TA获得超过101个赞
知道答主
回答量:68
采纳率:0%
帮助的人:31.9万
展开全部
(1)△OMN 为等腰三角形
(2)△AGD 为有一个角为30°的直角三角形
证明:连接BD,取BD中点I,连接FI,EI,因为E,F为BC和AD的中点
所以IE//DC IF//AB IE=1/2*DC=1/2*AB=IF ∠IEF=∠EFC=60°
∠AGF=∠IFE=∠IEF=60°
∠AFG=∠EFC=60°
所以△AGF等边.
AD=2AF
所以GF=FD
所以∠GDF=1/2*∠GDA=30°
所以∠AGD=180-30°-60°=90°

所以△AGD为有一个角为30°的直角三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式