怎么证明极限存在

 我来答
liyao19880112
2023-07-21 · TA获得超过327个赞
知道大有可为答主
回答量:4094
采纳率:100%
帮助的人:74万
展开全部

证明极限存在的方法有:应用夹逼定理证明、应用单调有界定理证明、从用极限的定义入手来证明、应用极限存在的充要条件证明等。

其中,夹逼定理是最常用的方法之一,即如果有函数f(x),g(x),h(x),满足g(x)≤f(x)≤h(x),Limg(x)=Limh(x)=A,则Limf(x)=A。单调有界定理也是常用的方法之一,即若数列递增且有上界,或数列递减且有下界,则极限存在。

从用极限的定义入手来证明也是一种方法,即对于任意正数ε(不论其多么小),都存在N>0,使不等式|xn-a|<ε在n∈(N,+∞)上成立。应用极限存在的充要条件也可以证明极限存在,例如柯西收敛准则和反常积分和级数中的比较判别法。

极限存在的条件

极限存在的充要条件:左极限存在,右极限存在,左右极限相等。可以概括为左右极都限存在且相等。

左极限就是函数从一个点的左侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。

右极限就是函数从一个点的右侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。

极限存在的充要条件是左右极限存在且相等。左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。

极限的定义

是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。

数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式